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ABSTRACT

Safety and/or economic reasons point to the necessity of
using lower-bounded statistical distribution functions for
smoothing and extrapolating fatigue life experimental data.
Practical experience with Weibull distributions is satisfactory to
a certain degree, but problems exist in calculation of the con-
fidence limits and proof of the convergence postulate. It is
therefore considered necessary to experiment with more
versatile discrete statistical distributions.

A proposed unified procedure for the evaluation of ex-
perimental data reduces the number of tests which must be
carried out. Similarly, cross-plotting for Wohler (S-N) curve
smoothing may be extended to include all failure probability
levels. The same basic procedures may also be applied to
lower-bound extrapolation of Charpy impact tests.

NOTATION
a slope of Weibull distribution
b, by Weibull constants
j number of test specimens
r correlation coefficient
n number of load cycles applied
Ar, weighted inaccuracy number

w impact energy
X experimental parameter

D* ‘zero’ fatigue damage

HB Brinell hardness number
N number of load cycles to failure

No number of load cycles for zero failure

probability
Nso number of load cycles for 50% failure
probability
P failure probability
o normal stress
o experimental parameter exponent
¢ load cycle number (non-dimensional)
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Subscripts

a denotes tests conducted at first stress level

b denotes tests conducted at second stress level
INTRODUCTION

Fatigue failure in airframe components may be classified
broadly in two groups: those which directly affect flight safety,
and those which have economic consequences only. In the
former case, a reasonably practical protection against fatigue
failure may be achieved by designing for a failure probability of
the order of 1075, In the latter case, the most economical service
life may correspond to a nominal failure probability of the order
of 0.1 percent. In both cases, there is a real problem because
of the inherently wide scatter in fatigue test results,

Mean value and deviation theorems being the most common
and most reliable ones used in mathematical statistics, early
fatigue test evaluations relied heavily upon them. In practice,
this has resulted in the use of log-normal or of two-parameter
Weibull distributions. Provision against the possibility of service
failure was achieved by the use of a sufficiently low nominal
failure probability.

In theory as well as in practice, the expression of a really
safe service life is synonymous with the corresponding fatigue
life distributions converging on some type of lower-bounded
statistical distribution function, except, of course, in the case
of fail-safe structures.

Mean values and standard deviations are always within the
limits of the experimentally measured fatigue life values, needing
some kind of interpolation procedure for their calculation.
Opposed to this, lower bounds are by their very nature outside
the experimental data range, necessitating some form of extra-
polation. It is at this juncture that the use of a computer is
practically mandatory, as all useful statistical extrapolation
procedures known to the author require extensive calculation.

SINGLE-LEVEL FATIGUE TESTS
Safe-Life Ratio

Before discussing in detail lower-bound extrapolation, let
us examine briefly the possibilities of circumventing this problem.
Cost-conscious industry managers frequently demand the deter-
mination of an allowable service life on the basis of two or three
tests. Efforts in this direction always assume that the true safe
service life may be not less than some convenient percentage of
the mean or median life as determined from tests. Figure 1
shows some of our experimental data which strongly contradicts
this assumption.

Nominal safe-life ratios, as determined by a procedure which
will be introduced later, do not appear to have guaranteed minima.
For median lives not exceeding 60,000 cycles, we did not achieve
any positive safe life at all, and for longer median lives (that is, at
lower stress ranges), the safe life ratio is critically influenced by
detail design and the quality of workmanship. We have had cases
of welding faults lowering the median life to 15 percent, resulting
in near-zero safe life values.
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FIG.1: NOMINAL SAFE LIFE RATIOS AS FUNCTION
OF THE MEDIAN LIFE
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Weibull Statistics

In view of the preceding remarks, individual lower bound
determination for all test series is to be recommended. For this
type of work, use of the so-called three-parameter Weibull dis-
tribution (known simply as a Weibull distribution) is customary.
The failure probability function of this distribution is:

Weibull analysis may be carried out numerically by the
method of least-squares or by spline-fit equations, but most
authors (Refs. 1\and 2) recommend graphical solution. The
weakness of this is that for the usual fatigue life series, there
is no value of N, which gives an exact straight-line fit. There
is, therefore, a substantial uncertainty in estimation of the safe
life. This problem may be solved by looking for the maximum
correlation coefficient of the straightened Weibull plot. Our
single-stress level fatigue test evaluation program which we call
WEIBULL F (Ref. 3) uses this approach — see Figure 2. It may
be regarded as an arithmetic counterpart of the graphical method,
and gives practically identical results with those obtained by the
use of spline-fit equations. '

Although our experiences with the Weibull distribution are
quite good so far, there are nevertheless some indications of
possible problem areas,

Confidence Limits and Convergence

The statement that Weibull parameters as determined from
two test specimens may not coincide with those determined from
a much larger population sample does not need any formal proof.
Unfortunately, there does not yet exist any universally-accepted
standardized Weibull confidence limit calculation procedure. The
common basic assumption is that if the number of tests could be
increased to infinity, then the experimental life distribution would
correspond with the Weibull distribution. Calculation of confi-
dence limits is based on this assumption, using usual probability
theory methods.

However, there are mathematical difficulties in execution

a
P(N) = 1- 10 BN =No)™ _ W(N) (1)  of the calculations for the full three-parameter Weibull function.
Johnson (Ref. 1) uses the two-parameter variant, as do several
other authors. Amstadter (Ref. 2) endeavours to evade the
By double differentiation this becomes: problem on the tacit assumption that the calculated values of
Ny are correct. In our own country, Marialigeti (Ref. 4) has
1 recently published a three-parameter confidence limit calculation
loglog ——— = a.log(N- Ny)+b (2) method assuming the correctness of the Weibull slope as deter-
1-P(N) mined by experiment.
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At Experimental data are fed into the computer in the order
030+ in which the tests were carried out. The program takes the first
az8} 1 A four results and grades them according to the fatigue lives obtained.

® Single level Best-fit Weibull parameters are computed and printed out, together
026} Hm Second level w1th ttl;xezv'alues of N5, thbe cor_-relation coefficient and the
= wei inaccuracy number given by:
ozl L& Nio=3162 gh y given by
5 A_]
022 i Ar, =(1-1) V/I-3 3)
0201 -
agl 4 Following this, the fifth result is taken, graded, and the best-
fit Weibull parameters are re-calculated. This process is repeated
oie} A until all test results have been evaluated.
A
04 During progressive data acquisition simulation, the values
ot of the correlation coefficient may oscillate in a random manner,
but they must exhibit a steadily-improving trend. If the con-
oot vergence postulate is true, then this trend has to be sufficiently
i strong that the sequence of the weighted inaccuracy numbers
003f- Py does not exhibit an increasing trend. The best way to check on
006} ‘ " m this is by calculating the means of several test series on similar
’ [ o | ® test specimens. Results of some calculations of this nature are
aos} 4 L | [ shown on Figure 3.
.
002} - Data for the series marked by circles and squares were taken
ol from tests conducted on a Dural-type alloy (Ref. 5). The circles
4 5 6 7 8 9 10j indicate mean values for a series of eight single-level tests, while
the squares indicate the means for a series of 27 two-level tests.
In the latter case, the Weibull evaluation has been carried out
FIG. 3: WEIGHED INACCURACY NUMBERS FOR for the number of cycles to failure at the second stress level.
WEIBULL PLOTS OF FATIGUE TESTS In both cases, the weighted inaccuracy numbers increase from

j=4 to j=6, indicating what might be termed uncertainty trends.
On the whole, we would have to say that there are insufficient
L . . . data to give significant trends except for the evidence presented
Quite distinct from the mathematical difficulties referred to, by the third series of tests, the data for which are marked by

there is a yet more fundamental problem — that is, verification triangles. These were single-level tests carried out at a stress
of the convergence postulate. To the best knowledge of the level giving a median life in excess of 3000 cycles. In this
:.mthor, this has not yet been proved, neither in'the single nor particular case there is an increase of nearly one order of
in the general case. We have attempted to obtain some data magnitude in the value of the weighted inaccuracy number,
which may lead towards a solution of this problem by use of indicating a distinctly non-Weibullian characteristic for the
the so-called progressive data acquisition simulation process, life distribution. Our experience so far indicates that such
which is one of the options of our fatigue evaluation program. behaviour is common in all cases approximating low-cycle
Calculation of the Weibull parameters proceeds as as follows: fatigue.
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FIG. 4: “ZERO” TWO-LEVEL FATIGUE DAMAGE OF
DURAL ROTATING-BENDING SPECIMENS
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This duality may be resolved in two ways. One either
accepts the fact that there is a different fatigue process in
those cases in which the stress level is such as to give median
lives less than' N, equal to approximately 50,000 cycles, or
one postulates the existence of a non-Weibullian fatigue life
distribution which approximates the Weibull distribution at
lower stress levels but has a different shape at higher stress
levels. The author prefers the latter view.

TWO-LEVEL FATIGUE TESTS
Nominal Safe Life

Two-level fatigue tests are most useful research tools for
investigating the problems of cumulative fatigue damage. For
50 percent failure probability, the fatigue lives actually obtained
were less than those predicted by Miner’s rule (Ref. 6) when the
higher stress was applied first, and greater when the lower stress
was applied first. At this level of experimentation, not much more
information is to be expected. Fortunately, zero failure proba-
bility fatigue life trends appear to have more regular character-
istics. Development of our fatigue life evaluation program since
1970 has led us to revise our former calculations on two-level
rotating bending fatigue tests on Dural specimens. Figure 4
shows some of the results obtained. The cumulative damage at
the zero failure level based on Miner’s rule has been calculated
by the following formula:

n, Nob

D¥ = +
MNo),,  (No),,

=&+ & L))

where D* is the Miner damage at zero failure level,

Our current N, values are probably more accurate than those
obtained in our earlier work in 1970, and the results are plotted on
Figure 4. The plain circles are for those results in which the higher
stress was applied first, while the filled-in circles are for those
results in which the low stress level was applied first.

PRACTICAL CONCLUSIONS

In the preceding substance of this paper, we have spoken of
difficulties in:

(a) Calculation of three-parameter Weibull confidence
limits.
(b) Proof of the convergence of the experimental fatigue
life sequences to the Weibull distribution.
Calculation of safe life for non-uniform stress levels.

(c)
Other problems also arise, such as:

{(d) Ambiguity in median rank ranging.

(e) Lack of an upper bound to the Weibull distribution.

There are two ways in which we are trying to improve the
current situation. Firstly, we have developed what we call a
discrete probability procedure for the three-parameter Weibull
confidence limit calculations. As part of our fatigue evaluation
program, we have been accumulating practical experience over a
period of several months in order to assess the accuracy of our
procedure. Secondly, we plan to substitute a family of discrete
probability distributions in place of the usual Weibull distribu-
tion. In this latter case, we hope to obtain better agreement
between experimental results and theory. Subject to the usual
delays to be expected in the development of a new computer
program, we hope that we shall be ready to proceed with
preliminary trials at the end of this year.

EXPERIMENTAL DEVELOPMENT

The fatigue endurance of airframe components is
critically dependent not only upon the stress level and on detail
design, but also on the quality and accuracy of manufacturing
processes. This is why a substantial percentage of fatigue tests
is carried out in order to determine the best combination of
the various parameters.

Comparison of two or more totally different technologies
can be made by calculating the confidence number for the ex-
perimental life ratios at the required failure probability level
(Refs. 1, 2 and 7). The same methods may be applied if
compliance with the prescribed technology is to be controlled,
as would be the case in a production contract. The problem
is far more complicated when one has to take into consideration
the optimum value or allowable limits of tempering hardness,
alloy content, surface finish, and numerous other variables.

The usual approach to problems of this nature is torun a
series of constant-parameter tests on a number of different
specimens.

After calculation of the best-fit life distributions for each,
fatigue lives for an appropriate failure probability level can be
plotted as a function of the parameter value. Optimum
parameter values and limits can be read from graphs. However,
this procedure is not very satisfactory because of the large
number of tests required, resulting in high costs and consider-
able time. We hope that we have approached a solution to this
problem in the development of an approximate evaluation
procedure which requires no constant-parameter series, but
only knowledge of the parameter value for each individual test
specimen.

Mathematical Basis of the Unified Evaluation Procedure

Let the numerical value of the parameter under test be
denoted by x. The different fatigue endurance limits of the
individual test specimens are characterized in the normal single-
level test evaluation procedure by the failure probability P.

For a manufacturing process of acceptable quality the
individual fatigue lives as observed by test may be regarded as
a sample series taken from the infinite life distribution:

N = N(x, P) (5)
This unknown distribution may be expressed in the form:
P = P(x,N) (6)

If the form of the life distribution function is not dependent
upon x, then we can substitute for this in the first approximation
as:

P = P(f(x) * N) = W(f(z) * N) )

provided, of course, that we are using a Weibull distribution.

The final proof of the correctness of this assumption can be
gained only by practical experience.

The computation sequence prbceeds as follows:

Firstly, it is advisable to plot cycles to failure as a function
of x for all test specimens. From this plot, an estimate is made of
a suitable function type denoted by f(x). The next step is
regression analysis for the f(x) parameters. This is carried out by
the computer program. The procedure is outlined in the following
example.
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Numerical Example

The example chosen is from a series of tests on leaf springs
carried out as part of a heat-treatment research program conducted
at the Budapest Technical University (Ref. 8). Series 81, 32 and
34 of these were selected in order to test the evaluation procedure
(Ref. 9). The Brinell hardness was selected as a numerical
parameter for the strength of the material after heat treatment.
Individual Brinell hardness and fatigue lives are plotted on Fig-
ure 5. Data for series 31 are indicated by squares, series 32 by
triangles, and series 34 by circles.

For the sake of simplicity, the following expression was

used as a weighting function:
f(x) = x° 8)
which yields the unified failure probability function:
P = Wx* - N) )

Regression analysis and subsequent search gave a value of
=-1.124 as an optimum fit exponent, resulting in the dis-
tribution indicated by the solid line on the right-hand side of
Figure 6. The computed nominal safe life as a function of Brinell
hardness is indicated by the solid line drawn on Figure 5.
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FIG. 5: THE INFLUENCE OF TEMPERING HARNESS ON
THE FATIGUE LIFE OF SPRING STEEL LEAVES

We also checked to see if it was possible to use fewer test
specimens without impairing the reliability of the results. The
unified evaluation procedure was repeated using only the first
half of the test results. The value of the optimum fit exponent
was calculated at -1.051, and the resulting unified distribution
is shown by the dotted line on Figure 6. At first sight the dif-
ference appears to be considerable, but the plot of Brinell hardness
against fatigue life (the dotted line on Figure 5) and Table I in-
dicates that the nominal safe lives (zero failure probability) are
practically unchanged.

While the simple power law weighting function may be
satisfactory for a number of cases characterized by a monotonic
increase or decrease in fatigue life for increasing parameter values,
local maxima or minima may necessitate the use of different
‘function types. Nevertheless, this does not change the essence of
the method.
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FIG. 6: UNITED WEIBULL GRAPH OF THE SPRING
LEAVE FATIGUE TESTS
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TAB.1: NOMINAL SAFE LIFE VALUES CALCULATED BY
DIFFERENT METHODS

WOHLER CURVE IMPROVEMENTS

Perfect modelling of the random process involved in air and
ground fatigue loads is not possible by test. Even a flight record
containing every detail of the loads imposed in their correct time
and space orientation is still only a single sample taken from a
potentially infinite series. Every safe service life prediction is
based on some kind of cumulative damage calculation. The
theoretical and practical problems involved in arriving at a perfect
cumulative damage theory are outside the scope of this paper,
but we should consider briefly a small but important detail
amenable to improvement by the introduction of computer-
based methods of calculation.

The classical form of handling fatigue data is the Wohler
(S-N) curve. The current simplified form of plot showing part of
the 50 percent failure probability data as two straight lines on
semi-log paper is wholly inadequate and out-dated when compared
with the best statistical methods for evaluation of single level
tests — that is,Weibull.

While several realistic smoothing functions have been
proposed for smoothing S-N curves (Ref. 10), even the best
of these are limited in their application because they are
confined to the 50 percent failure probability level. In only a
few cases has any attempt been made to improve this situation.
Figure 7 shows one made by the author. However, this may
not be a particularly good solution, as cross-plotting between
the different stress levels is at present done only by eye.
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FIG. 7: WOHLER-CURVE SYSTEM FOR ROTATING-
BENDING TESTS (REF. 5)

We therefore plan to conduct some trials using an analytical
cross-plot method at all probability levels. The problem is
generally similar to the experimental parameter case as the S-N
curve descriptive function may be written as:

P = P(o,N) (10)

However, it would be incorrect simply to copy the evaluation
method outlined. It is known from theory as well as from experi-
ence that the safe life ration N /N , is strongly dependent upon
the stress level. We therefore intend to start our investigations by
development of a parametric curve system from one of the 50 per-
cent formulae, and it is hoped that this may lead to the develop-
ment of a higher order unified evaluation method. However, we
are at the moment handicapped by a lack of sufficient reliable
experimental data.

CHARPY IMPACT TESTS

Charpy impact tests have one thing in common with fatigue
tests, that is, the problem of substantial scatter in test results.
Material properties are incompletely defined by the mean of the
test results, and for adequate safety extrapolation by a suitable
distribution function to a very low nominal failure probability
is necessary.

The methods applied are similar to the fatigue evaluation
process, and the results we have obtained up to the present time
are summarized in the author’s original paper.

CONCLUSIONS

Reliable prediction of low failure probability fatigue lives is
possible only by extrapolation using lower-bounded statistical
distribution functions. Mathematical difficulties in calculation
of confidence limits using the three-parameter Weibull distribu-
tion may be avoided by the use of discrete probability variables.

In the field of experimental development directed towards
fatigue life improvement, the proposed unified test evaluation
procedure can give substantial savings in the number of test

specimens required, and further developments of this procedure
may lead to successful analytical cross-plotting between different
stress levels at all failure probability levels.
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